Sonnenstandsberechnung: Unterschied zwischen den Versionen
Aus Energie-Wiki
energie>WikiSysop |
energie>WikiSysop |
||
Zeile 71: | Zeile 71: | ||
== Horizontalsystem (topozentrisch) == | == Horizontalsystem (topozentrisch) == | ||
Bezugssystem: ist der Ort des Betrachters | Bezugssystem: ist der Ort des Betrachters. Der '''Zenit''' liegt genau über dem Betrachter, der '''Nadir''' direkt unter dem Betrachter. | ||
* θ - Sternzeit am Ort des Betrachters | * θ - Sternzeit am Ort des Betrachters | ||
* φ - Geografische Breite des Betrachters (latitude) | * φ - Geografische Breite des Betrachters (latitude) |
Version vom 8. Februar 2018, 09:12 Uhr
Hinweis: Diese Seite wird nur temporär zur Dokumentation von Berechnungsmethoden benutzt!
Siehe auch: Sonnenstrahlungsberechnung
Normen/Dokumente für die Berechnung des Sonnenstandes
- DIN 5034-2 [1985-02]
- VDI 6007-3 [2015-06]
- VDI 3789 [1994-10]
- Ashare fundamentals handbook (1985), chapter 27, fenestration
- Ashare Handbook 2007, Chapter 32
- Sonnenstandsberechnung (C++): http://www.psa.es/sdg/sunpos.htm
Based on "Computing the Solar Vector" by Manuel Blanco-Muriel, Diego C. Alarcon-Padilla, Teodoro Lopez-Moratalla, and Martin Lara-Coira, in "Solar energy", vol 27, number 5, 2001 by Pergamon Press. - pysolar
I. Reda and A. Andreas, "Solar Position Algorithm for Solar Radiation Applications," National Renewable Energy Laboratory, NREL/TP-560-34302,revised Jan. 2008
However, it seems that Reda and Andreas took the bulk of the constants (L0, etc.) from Pierre Bretagnon and Gerard Francou's Variations Seculaires des Orbites Planetaires, or VSOP87: wikipedia:de:Variations_séculaires_des_orbites_planétaires#VSOP87, Download: ftp://ftp.imcce.fr/pub/ephem/planets/vsop87/VSOP87D.ear - wikipedia:de:Sonnenstand
- wikipedia:de:Zeitgleichung
- Vergleich von Berechnungsmethoden: https://userpage.fu-berlin.de/geoiss/ress/Bachelor/BSc-Thuerkow_Markus-2009.pdf
- NREL. (February 2000). SOLPOS Online Calculator http://midcdmz.nrel.gov/solpos/solpos.html
Zeitermittlung
- Wahre Ortszeit: WOZ = MOZ + Zgl./60 [60=Minuten pro Stunde]
- Tag des Jahres als Winkel (Basis 365 Tage)
- J Julianisches Datum wikipedia:en:Julian_day und wikipedia:de:Julianisches Datum
- J2000 Standardäquinoktium (Julianisches Datum = 2451545,000) Berechnung des Julianischen Datums (Basis: 1.1.2000 12.00 Uhr TDT = 1. Januar 2000, 11:58:55,816 UTC)
- T = J2000 / 36525 (Julianisches Jahrhundert)
- Sternzeit θ (Stundenwinkel des Frühlingspunktes)
- [math]\displaystyle{ \begin{align} \mathrm{GMST(0h \, UT)}\, & = \, 6^\mathrm{h} 41^\mathrm{m} 50{,}54841^\mathrm{s} + 8640184{,}812866^\mathrm{s} \cdot T + 0{,}093104^\mathrm{s} \cdot T^2 - 0{,}0000062^\mathrm{s} \cdot T^3 \\ & = \, 24110{,}54841^\mathrm{s} + 8640184{,}812866^\mathrm{s} \cdot T + 0{,}093104^\mathrm{s} \cdot T^2 - 0{,}0000062^\mathrm{s} \cdot T^3 \\ & = \, 100{,}46061837^\circ + 36000{,}770053608^\circ \cdot T + 0{,}000387933^\circ \cdot T^2 - (T^3 / 38710000)^\circ \end{align} }[/math]
- Stundenwinkel aus der Ermittlung über die Sternzeit: τ = θ0 - α
- Stundenwinkel aus der Zeitgleichung: ω = (WOZ - 12) 15°/h
ekliptikales Koordinatensystem
Bezugskoordinaten liegen auf der Ekliptik
- λ - Ekliptikale Länge
- β - Ekliptikale Breite
rotierendes Äuquatoriales Koordinatensystem
Bezugssystem: Erdmittelpunkt, Horizontalebene ist der Himmelsäquator
- ε - Schiefe der Ekliptik ca. 23°
- α - Rektazension - Horizontalwinkel der Sonne zum Frühlingspunkt
- ZGL = Zeitgleichung ist die Abweichung zur mittleren Rektazension auf der Äquatorebene
- [math]\displaystyle{ ZGL = 1440 - (\overline{\lambda} + \varpi - \alpha)\cdot 4 \ min/^\circ }[/math] -->(1440/360=4)
- δ - Deklination - Höhenwinkel der Sonne in Bezug zum Himmelsäquator
- τ - Stundenwinkel - Winkel zwischen Süden im Horizontalsystem und der Sonne im Äquatorialsystem τ = θ - α
Umrechnung ekliptikale Koordinaten -> rotierende äquatoriale Koordinaten:
- [math]\displaystyle{ \delta = \arcsin \left( \cos \epsilon \cdot \sin \beta + \sin \epsilon \cdot \cos \beta \cdot \sin \lambda \right) }[/math]
- [math]\displaystyle{ \alpha = \arctan \left( \frac {\cos \epsilon \cdot \sin \lambda - \sin \epsilon \cdot \tan \beta} {\cos \lambda} \right) }[/math]
Rektazension einfach:
- [math]\displaystyle{ \alpha = \arctan \left( \tan \lambda \cdot \cos \epsilon \right) }[/math] ???
- [math]\displaystyle{ \alpha = \arctan2 \left(\frac{\cos \epsilon \cdot \sin \lambda}{\cos \lambda}\right) }[/math]
- [math]\displaystyle{ \delta = \arcsin \left(\sin \epsilon \cdot \sin \lambda \right) }[/math]
Ashare
- Tag des Jahres: [math]\displaystyle{ x = \frac{360^\circ}{365} (DOY-81) }[/math]
- Deklination (Winkel in Grad): [math]\displaystyle{ \delta = 23,45 \cdot \sin x }[/math]
- Zeitgleichung (Winkel in Grad): [math]\displaystyle{ EOT = 9,87 \cdot \sin(2 \cdot x) - 7,53 \cdot \cos x - 1,5 \cdot \sin x }[/math]
Horizontalsystem (topozentrisch)
Bezugssystem: ist der Ort des Betrachters. Der Zenit liegt genau über dem Betrachter, der Nadir direkt unter dem Betrachter.
- θ - Sternzeit am Ort des Betrachters
- φ - Geografische Breite des Betrachters (latitude)
- λ - Geografische Länge des Betrachters (longitude)
- a - Horizontalwinkel (azimuth)
- h - Höhenwinkel (altitude)
Umrechnung der Koordinaten aus dem rotierenden äquatorialen Koordinatensystem:
- [math]\displaystyle{ h = \arcsin \left( \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos (\theta - \alpha) \right) }[/math]
- [math]\displaystyle{ a = \arctan \frac {\sin (\theta - \alpha)} {\sin \phi \cdot \cos (\theta - \alpha) - \cos \phi \cdot \tan \delta} }[/math]
- (hier gilt die Bestimmung des Quadranten gemäß Umrechnung von kartesischen in Polarkoordinaten)
Umrechnung der Koordinaten aus dem ruhenden äquatorialen Koordinatensystem:
- [math]\displaystyle{ h = \arcsin \left( \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos \tau \right) }[/math]
- [math]\displaystyle{ a = \arctan \left( \frac {\sin \tau} {\sin \phi \cdot \cos \tau - \cos \phi \cdot \tan \delta} \right) }[/math]
- (hier gilt die Bestimmung des Quadranten gemäß Umrechnung von kartesischen in Polarkoordinaten)
Umrechnung nach VDI 3789:
- Höhenwinkel [math]\displaystyle{ \sin h = \sin \phi \cdot \sin \delta + \cos \phi \cdot \cos \delta \cdot \cos \omega }[/math]
- Horizontalwinkel [math]\displaystyle{ \cos a = \frac{\sin \phi \cdot \sin h - \sin \delta}{\cos \phi \cdot \cos h} }[/math]
- Winkel zum Zenith Ashare [math]\displaystyle{ \cos z = \cos \phi \cdot \cos \delta \cdot \cos \omega + \sin \phi \cdot \sin \delta }[/math]
- Horizontalwinkel Thürkow [math]\displaystyle{ \sin \lambda_S = \frac{\cos \delta \cdot \sin \phi \cdot \cos \omega - \sin \delta \cdot \cos \phi}{sin h} }[/math]
- Horizontalwinkel Thürkow umgeformt: [math]\displaystyle{ \lambda_S = atan2(\sin \omega \cdot \cos \delta, \cos \omega \cdot \cos \delta \cdot \sin \phi - \sin \delta \cdot \cos \phi) }[/math]
Objekt/ Fläche
- αF Schiefe der Fläche (inclination)
- γF Richtung der Fläche (azimuth)
- spärischer Winkel zwischen Flächennormale und Sonnenstrahlung [math]\displaystyle{ \cos \xi= \sin \gamma_S \cdot \cos \gamma_F \cdot + \cos \gamma_S \cdot \sin \gamma_F \cdot \cos(abs (\alpha_F - \alpha_S )) }[/math]