Stefan-Boltzmann-Konstante: Unterschied zwischen den Versionen
Aus Energie-Wiki
energie>WikiSysop Keine Bearbeitungszusammenfassung |
energie>WikiSysop Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
Nach dem Stefan-Boltzmann-Gesetz gibt jeder Körper, dessen Temperatur (T) über dem absoluten Nullpunkt liegt Wärmestrahlung ab. Mit der Stefan-Boltzmann-Konstante kann die Wärmestrahlung berechnet werden. Die Konstante beträgt: | Nach dem Stefan-Boltzmann-Gesetz gibt jeder Körper, dessen Temperatur (T) über dem absoluten Nullpunkt liegt Wärmestrahlung ab. Mit der Stefan-Boltzmann-Konstante kann die Wärmestrahlung berechnet werden. Die Konstante beträgt: | ||
: <math>\sigma; = \frac{2 \cdot \pi^5 \cdot k_B^4}{15 \cdot h^3 \cdot c^2} = 5,670367 \cdot 10^{-8} \frac W{m^2 K^4}</math> | |||
* k<sub>B</sub>=1,38064852e-23 J/K Boltzmann-Konstante (Naturkonstante), nicht mit der ''Stefan-Boltzmann-Konstante'' σ zu verwechseln | * k<sub>B</sub>=1,38064852e-23 J/K Boltzmann-Konstante (Naturkonstante), nicht mit der ''Stefan-Boltzmann-Konstante'' σ zu verwechseln |
Version vom 28. Oktober 2018, 23:12 Uhr
Nach dem Stefan-Boltzmann-Gesetz gibt jeder Körper, dessen Temperatur (T) über dem absoluten Nullpunkt liegt Wärmestrahlung ab. Mit der Stefan-Boltzmann-Konstante kann die Wärmestrahlung berechnet werden. Die Konstante beträgt:
- [math]\displaystyle{ \sigma; = \frac{2 \cdot \pi^5 \cdot k_B^4}{15 \cdot h^3 \cdot c^2} = 5,670367 \cdot 10^{-8} \frac W{m^2 K^4} }[/math]
- kB=1,38064852e-23 J/K Boltzmann-Konstante (Naturkonstante), nicht mit der Stefan-Boltzmann-Konstante σ zu verwechseln
- h=6,626070040e-34 Js Plancksches Wirkungsquantum
- c=299.792.458 m/s Lichtgeschwindigkeit
Die Strahlung eines Körpers beträgt: q = ε σ T^4
Siehe auch: Wärmequellen aufgrund solarer Einstrahlung