Sonnenstrahlungsberechnung

Aus Energie-Wiki

Hinweis: Diese Seite wird nur temporär zur Dokumentation von Berechnungsmethoden benutzt!


Normen, Richtlinien und Veröffentlichungen für die Berechnung des Sonnenstandes

Normen / Richtlinien:

  • DIN 4710 [2003-01] - Linke Trübungsfaktoren
  • DIN 5034-2 [1985-02] - Tageslicht (weitgehend identisch mit VDI 6007-3)
  • DIN EN ISO 13791 [2012-08] - nur Raummodell ohne Strahlungsquellen
  • DIN EN ISO 15927-1 [2004-02] - Berechnung von Klimadaten
  • Entw. VDI 2067 Blatt 11 [1998-06] - Umrechnung kurzwelliger Strahlung aus TRY
  • VDI 6007 Blatt [2015-06]
  • VDI 3789 [1994-10]
  • Entw. VDI 3789 [2016-09]
  • VDI 3789 Blatt 3 [2001-

Veröffentlichungen:

Extraterrestrische Solarstrahlung (kurzwellig)

Solarstrahlung [math]\displaystyle{ G_0 = \sigma \cdot T^4 \cdot \frac{\pi \cdot d_s^2}{AE^2 \cdot 4 \cdot \pi} = 1369,35 W/m^2 }[/math]

mit:

  • σ = 5,670367e-8 W/(m²K4) Boltzmann-Konstante
  • T = 5778 K Temperatur der Sonnenoberfläche
  • ds = 696342000*2 m Durchmesser der Sonne
  • AE = 149597870700 m Astronomische Einheit = Mittlerer Abstand zwischen Sonne und Erde

Extraterrestrische Sonnenstrahlung nach VDI 3789-2:

J = Nummer des Tages im Jahr [1..365/366]
Jahreswinkel: [math]\displaystyle{ x = 0,9856^\circ \cdot J - 2,72^\circ }[/math]
Mittelwert [math]\displaystyle{ \overline{I_0} = 1367 W/m^2 }[/math] [Formel 10]
extraterr. Strahlung [math]\displaystyle{ I_0 = \overline{I_0} \cdot (\overline{r}/r)^2 = \overline{I_0} \cdot (1 + 0,03344 \cdot \cos(J')) }[/math]. [Formel 11+12]

Extraterrestrische Sonnenstrahlung nach VDI 6007-3:

[math]\displaystyle{ J'= 360^\circ \cdot \frac{J}{365} }[/math] mit J = Tag des Jahres 1..365
Solarkonstante [math]\displaystyle{ E_0 = 1370 \cdot ( 1 + 0,033 \cdot \cos(J') }[/math]. [Formel 13]

Direkte Sonnenstrahlung

kurzwellig Strahlung in Richtung der Normale (ohne Horizonteinschränkung):

  • z - Höhe des Orte über N.N. [m]
  • Druckkorrektur zur Reduktion der opt. Dicke der Normatmosphäne [math]\displaystyle{ p/p_0 = \exp(-z / 8434,5) }[/math]
  • m relative optische Luftmasse
  • δRO : vertikale optische Dicke (Raylight-Atmosphäre):

Formeln für die Raylight-Atmosphäre und Dicke der Luftmasse gelten für γ>5° (für γ>10° ist [math]\displaystyle{ m=\frac{1}{\sin(\gamma)} }[/math])

γ>10° [math]\displaystyle{ m = \frac{1}{\sin(\gamma)} }[/math] - γ>5° [math]\displaystyle{ m=\frac{1}{\sin(\gamma) + 0,50572 \cdot (\gamma + 6,07995^\circ)^{-1,6364}} }[/math] bei Winkeln ≤5° gibt es eine Tabelle in VDI 3789-2, Anhang B
[math]\displaystyle{ \delta_{RO} = \frac{1}{0,9 \cdot m + 9,4} }[/math]
[math]\displaystyle{ \delta_{RO} \cdot m = \frac{1}{0,9 + 9,4 / m} }[/math]
[math]\displaystyle{ I = I_0 \cdot \exp \left(-T_L \cdot \delta_{RO} \cdot m \cdot (p/p_0) \right) }[/math]
[math]\displaystyle{ I = I_0 \cdot \exp \left(-T_L \cdot \frac{1}{0,9 + 9,4 \cdot sin(\gamma)} \cdot (p/p_0) \right) }[/math]

Kurzwellige Strahlung nach VDI 6007:

Referenzhöhe: HR = 8000 m
[math]\displaystyle{ P_{diff,hor,SSW=1} = E_0 \cdot \exp \left(-T_L \cdot \frac{1}{0,9 + 9,4 \cdot sin(\gamma)} \cdot exp(-H_{Geo}/H_R) \right) }[/math]


Direkte Strahlung bei bewölktem Himmel:

[math]\displaystyle{ I(N) = (1 - N/8) \cdot I }[/math]

Direkte Strahlung auf eine Horizontalebene:

[math]\displaystyle{ B = I \cdot sin(\gamma) }[/math]

Umrechnung aus Globalstrahlung und diffuser Strahlung

[math]\displaystyle{ I = \frac{B}{\sin(\gamma)} = \frac{(G - D)}{\sin(\gamma)} }[/math]

Globale Strahlung

Berechnung der relativen optischen Luftmasse (m) und der vertikalen optischen Dicke der Atmosphäre nach Kasten und Young (1989) [in VDI 3789-2, Anhang B]:

[math]\displaystyle{ m = \frac{1}{\sin(\gamma) + 0,50572 \cdot (\gamma + 6,07995^\circ)^{-1,6364}} }[/math]
bei γ>10° gilt: [math]\displaystyle{ m = \frac{1}{\sin(\gamma)} }[/math]

Für γ>5° kann die optische Dicke der reinen und trockenen Normalatmosphäre (Rayleight-Atmosphäre) nach Kasten wie folgt berechnet werden:

[math]\displaystyle{ \delta_{RO} = \frac{1}{0,9 \cdot m + 9,4} }[/math]
[math]\displaystyle{ m * \delta_{RO} = \frac{1}{0,9 + 9,4 / m} }[/math]


Wolkenloser Himmel [math]\displaystyle{ G(0) = 0,84 \cdot I_0 \cdot sin(\gamma) \cdot \exp \left(-T_L \cdot 0,027 \cdot \frac{1}{ sin(\gamma)} \cdot (p/p_0)\right) }[/math]
Bewölkter Himmel [math]\displaystyle{ G(N) = G(0) \cdot [1 - a(N/8)^b] }[/math]

mit a = 0,72 (nach VDI 6007-3 S. 10 a=0,60) und b = 3,2 und N als Bedeckungsgrad in Achteln (0...8)

Diffuse Strahlung

Unbewölkter Himmel auf horizontaler Fläche:

[math]\displaystyle{ D(0) = G(0) - I \cdot \sin(\gamma) }[/math]

Bewölkter Himmel

[math]\displaystyle{ D(N) = G(N) - I(N) \cdot \sin(\gamma) }[/math]


Diffuse Strahlung auf geneigten Flächen:

Bei vollständiger Bedeckung verhält sich die diffuse Strahlung isotrop (richtungsunabhängig). Hier gilt:

[math]\displaystyle{ D(\alpha, \beta; 8) = D(8) \cdot cos^2(\beta/2) }[/math]
[math]\displaystyle{ D(8) = G(8) = G(0) \cdot (1 - a) }[/math]

Bei wolkenlosem Himmel ist es die Summe aus anisotroper und isotroer Strahlung (nach Hy und McKay 1985):

[math]\displaystyle{ \tau = I / I_0 }[/math]
[math]\displaystyle{ D(\beta, \alpha; 0) = D(0) \left[\tau \cdot \frac{cos(\eta)}{sin(\gamma)} + (1 - \tau) \cdot cos^2(\beta/2) \right] }[/math]

Diffuse Strahlung auf geneigter Fläche gesamt:

[math]\displaystyle{ D(\beta, \alpha; N) = (1 - N/8) \cdot D(\beta, \alpha; 0) + (N/8) \cdot D(\beta, \alpha; 8) }[/math]

Umrechnung von Werten aus TRY

Anleitung nach VDI 6007 Blatt 3 (Nr. 7.1):

  • Umrechnung der Strahlung auf ξ = 0° (In Richtung der Sonnenstrahlung)
  • Begrenzung der Normalstrahlung auf den Wert bei wolkenlosem Himmel unter Verwendung von TLinke = Monatsmittel - 2 x Standardabweichung
  • Wichtung bei Bedeckung


Winkel zwischen Normalstrahlung (in Richtung der Sonnenstrahlen) und Fläche

  • ξ [VDI 6007-3] oder η [VDI 3789-3] - sphärischer Winkel zwischen der Normale der Sonnenstrahlung und der Normale der betrachteten Fläche
  • γs - Höhenwinkel der Sonnenstrahlen
  • γF oder β - Neigung der Fläche zur Horizontale (0°=Flachdach - 45°=Steildach - 90°=Wand)
  • αs - Horizontalwinkel / Azimut der Sonnenstrahlen
  • αF oder Ψ - Horizontalwinkel der Fläche
VDI 6007-3 (11):[math]\displaystyle{ \cos(\xi) = \sin(\gamma_s) \cdot \cos(\gamma_F) + \cos(\gamma_s) \cdot \sin(\gamma_F) \cdot \cos(\vert\alpha_F - \alpha_S \vert) }[/math]
VDI 3789-2 (16):[math]\displaystyle{ \cos(\eta) = \sin(\gamma) \cdot \cos(\beta) + \cos(\gamma) \cdot \sin(\beta) \cdot \cos(\vert\alpha - \Psi \vert) }[/math]

Berücksichtigung von reflektierter Strahlung

Albedo-Faktor ϱs [VDI 3789-2] oder ρUmg [VDI 6007-3]

[math]\displaystyle{ I_{refl} = I_{hor} \cdot \varrho_s \cdot \sin2(\gamma_F/2) = I_{hor} \cdot \rho_{Umg} \cdot 0,5 \cdot (1-\cos(\gamma_F)) }[/math]