Luftschicht: Unterschied zwischen den Versionen

Aus Energie-Wiki
energie>WikiSysop
Keine Bearbeitungszusammenfassung
K 14 Versionen importiert
 
(11 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
Der Wärmedurchgang durch Luftschichten in Bauteilen hängt von der Geometrie der Luftschichten und der Ausrichtung ab.
Der Wärmedurchgang durch Luftschichten in Bauteilen hängt von der Geometrie der Luftschichten und der Ausrichtung ab.


Berechnungsmöglichkeiten finden sich in DIN EN 673 und DIN EN ISO 6946.
Berechnungsmöglichkeiten finden sich in  
* DIN EN 673  
* DIN EN ISO 6946
* DIN EN ISO 10077-2 (Fenster)
* ISO 15099 (Fenster)
 
Alle Berechnungsverahren berechnen die Wärmeleitfähigkeit aus einem Anteil aus Konvektion und Wärmeleitung (h<sub>c</sub> EN: convection) und einem Anteil aus Wärmestrahlung (h<sub>r</sub> EN: radiation).
 
== Wärmedurchlasskoeffizient durch Wärmeleitung und Konvektion ==
 
Der Wärmedurchlasskoeffizient durch Wärmeleitung und Konvektion h<sub>c</sub> wird in der Regel über die '''Nußelt-Zahl''' ermittelt. Die Nußelt-Zahl ist das Verhältnis der Wärmestromdichte aus einem bewegten und einem ruhenden Fluid (z.B. Luft). Die Nußelt-Zahl beträgt mind. 1 (Wärmeleitfähigkeit des ruhenden Fluids).
 
Die Nußelt-Zahl ist für Luft in DIN EN ISO 6946 wie folgt tabelliert:
{| class="wikitable"
! Richtung des Wärmestromes !! Nu für &Delta;T&le;5 !! Nu für &Delta;T>5
|-
| horizontal || <math>max(1;d \cdot 1,25 / \lambda_{air})</math> || <math>max(1;d \cdot 0,73 \cdot \Delta T^{1/3} / \lambda_{air})</math>
|-
| aufwärts || <math>max(1;d \cdot 1,95 \cdot / \lambda_{air})</math> || <math>max(1;d \cdot 1,14 \cdot \Delta T^{1/3} / \lambda_{air})</math>
|-
| abwärts|| <math>max(1;d^{0,56} \cdot 0,12 \cdot / \lambda_{air})</math> || <math>max(1;d^{0,56} \cdot 0,09 \cdot \Delta T^{0,187} / \lambda_{air})</math>
|}
 
* &Delta;T - Temperaturdifferenz [K]
* &lambda;<sub>air</sub> - Wärmeleitfähigkeit der ruhenden Luft = 0,025 W/(mK)
* d - Dicke der Luftschicht [m]
 
Der Wärmedurchlasskoeffizient berechnet sich wie folgt:
 
:<math>h_c = \frac{Nu \cdot \lambda_{air}}{d}</math>
 
Für kleine Lufträume bei Fenstern kann vereinfachend von einem horizontalem Luftraum mit &Delta;T=10 K ausgegangen werden. In diesem Fall vereinfacht sich die Formel für h<sub>c</sub> auf:
:<math>Nu = max(1; \frac{d \cdot 0,73 W/(m²K^{4/3}) \cdot \Delta T ^{(1/3)}}{\lambda_{air}})</math>
:<math>h_c = max(\frac{\lambda_{air}}{d};C \cdot \Delta T^{(1/3)})</math>
:<math>h_c = max(\frac{\lambda_{air}}{d}; 1,57 W/(m²K))</math>
 
Für andere Gase (z.B. Gasfüllungen zwischen Isolierverglasungen) ergeben sich abweichende Kennwerte für die Nußelt-Zahl. Deshalb sieht die DIN EN 673 für Hohlräume zwischen Verglasungen eine detaillierte Ermittlung der Nußelt-Zahl Nu vor:
 
: <math>Nu = A \cdot (Gr \cdot Pr)^n</math>
: <math>Gr = \frac{9,81s^3 \cdot \Delta T \cdot \rho ^2}{T_m \cdot \mu ^2}</math>
: <math>Pr = \frac{\mu \cdot c}\lambda</math>
* &rho;, &mu;, c, &lambda; sind die Eigenschaften (Dichte, dyn. Viskosität, spez. Wärmespeicherf., Wärmeleitfähigkeit) des Gases im Luftraum
* s ist die Dicke der Luftschicht
 
 
Konstanten für die Berechnung:
{| class="wikitable"
! Ausrichtung !! Kontante A !! Exponent n
|-
| vertikal - Wärmestrom horizontal || A=0,035 || n=0,38
|-
| horizontal - Wärmestrom nach oben || A=0,16 || n=0,28
|-
| geneigt ca. 45° - Wärmestrom schräg nach oben || A=0,10 || n=0,31
|}
 
== Wärmedurchlasskoeeffizient für Wärmestrahlung ==
 
Für die Berechnung des Wärmedurchlasskoeffizienten für die Wärmestrahlung h</sub>c</sub> gibt es zwei grundsätzliche Verfahren:
 
* Äquivalente Wärmeleitfähigkeit (DIN EN ISO 6946, DIN EN 673 und DIN EN ISO 10077-2)
* Radiosity-Verfahren (DIN EN ISO 10077-2)
 
Die äquivalente Wärmeleitfähigkeit berechnet sich wie folgt:
:DIN EN ISO 10077-1: <math>h_r = 4 \cdot \sigma \cdot T_{mit}^3 \cdot F \cdot E</math>
:DIN EN ISO 6946: <math>h_r = \frac{4 \cdot \sigma \cdot T_{mit}^3}{1/E-1+1/F}</math>
:DIN EN 673: <math>h_r = 4 \cdot \sigma \cdot T_{mit}^3 \cdot E</math>
* &sigma; - Stefan-Boltzmann-Konstante: 5,67E−8 W/(m²K4)
* T<sub>mit</sub> - mittlere thermodynamische Temperatur (vereinfachend T=283 K = 10°C)
* F - Winkelfaktor bzw. Einstrahlzahl für kleine Hohlräume (Breite und Höhe jeweils kleiner als die 10fach Tiefe (Dicke in Wärmestromrichtung) <math>F = 0,5 \cdot (1+\sqrt{1+(d/b)^2}-d/b)</math>
* E - Strahlungsaustauschgrad <math>E = (1/\epsilon_1 + 1/\epsilon_2 - 1)^{-1}</math>
 


siehe: [[Wärmedurchlasskoeffizient]]
siehe: [[Wärmedurchlasskoeffizient]]

Aktuelle Version vom 9. April 2021, 05:53 Uhr

Der Wärmedurchgang durch Luftschichten in Bauteilen hängt von der Geometrie der Luftschichten und der Ausrichtung ab.

Berechnungsmöglichkeiten finden sich in

  • DIN EN 673
  • DIN EN ISO 6946
  • DIN EN ISO 10077-2 (Fenster)
  • ISO 15099 (Fenster)

Alle Berechnungsverahren berechnen die Wärmeleitfähigkeit aus einem Anteil aus Konvektion und Wärmeleitung (hc EN: convection) und einem Anteil aus Wärmestrahlung (hr EN: radiation).

Wärmedurchlasskoeffizient durch Wärmeleitung und Konvektion

Der Wärmedurchlasskoeffizient durch Wärmeleitung und Konvektion hc wird in der Regel über die Nußelt-Zahl ermittelt. Die Nußelt-Zahl ist das Verhältnis der Wärmestromdichte aus einem bewegten und einem ruhenden Fluid (z.B. Luft). Die Nußelt-Zahl beträgt mind. 1 (Wärmeleitfähigkeit des ruhenden Fluids).

Die Nußelt-Zahl ist für Luft in DIN EN ISO 6946 wie folgt tabelliert:

Richtung des Wärmestromes Nu für ΔT≤5 Nu für ΔT>5
horizontal [math]\displaystyle{ max(1;d \cdot 1,25 / \lambda_{air}) }[/math] [math]\displaystyle{ max(1;d \cdot 0,73 \cdot \Delta T^{1/3} / \lambda_{air}) }[/math]
aufwärts [math]\displaystyle{ max(1;d \cdot 1,95 \cdot / \lambda_{air}) }[/math] [math]\displaystyle{ max(1;d \cdot 1,14 \cdot \Delta T^{1/3} / \lambda_{air}) }[/math]
abwärts [math]\displaystyle{ max(1;d^{0,56} \cdot 0,12 \cdot / \lambda_{air}) }[/math] [math]\displaystyle{ max(1;d^{0,56} \cdot 0,09 \cdot \Delta T^{0,187} / \lambda_{air}) }[/math]
  • ΔT - Temperaturdifferenz [K]
  • λair - Wärmeleitfähigkeit der ruhenden Luft = 0,025 W/(mK)
  • d - Dicke der Luftschicht [m]

Der Wärmedurchlasskoeffizient berechnet sich wie folgt:

[math]\displaystyle{ h_c = \frac{Nu \cdot \lambda_{air}}{d} }[/math]

Für kleine Lufträume bei Fenstern kann vereinfachend von einem horizontalem Luftraum mit ΔT=10 K ausgegangen werden. In diesem Fall vereinfacht sich die Formel für hc auf:

[math]\displaystyle{ Nu = max(1; \frac{d \cdot 0,73 W/(m²K^{4/3}) \cdot \Delta T ^{(1/3)}}{\lambda_{air}}) }[/math]
[math]\displaystyle{ h_c = max(\frac{\lambda_{air}}{d};C \cdot \Delta T^{(1/3)}) }[/math]
[math]\displaystyle{ h_c = max(\frac{\lambda_{air}}{d}; 1,57 W/(m²K)) }[/math]

Für andere Gase (z.B. Gasfüllungen zwischen Isolierverglasungen) ergeben sich abweichende Kennwerte für die Nußelt-Zahl. Deshalb sieht die DIN EN 673 für Hohlräume zwischen Verglasungen eine detaillierte Ermittlung der Nußelt-Zahl Nu vor:

[math]\displaystyle{ Nu = A \cdot (Gr \cdot Pr)^n }[/math]
[math]\displaystyle{ Gr = \frac{9,81s^3 \cdot \Delta T \cdot \rho ^2}{T_m \cdot \mu ^2} }[/math]
[math]\displaystyle{ Pr = \frac{\mu \cdot c}\lambda }[/math]
  • ρ, μ, c, λ sind die Eigenschaften (Dichte, dyn. Viskosität, spez. Wärmespeicherf., Wärmeleitfähigkeit) des Gases im Luftraum
  • s ist die Dicke der Luftschicht


Konstanten für die Berechnung:

Ausrichtung Kontante A Exponent n
vertikal - Wärmestrom horizontal A=0,035 n=0,38
horizontal - Wärmestrom nach oben A=0,16 n=0,28
geneigt ca. 45° - Wärmestrom schräg nach oben A=0,10 n=0,31

Wärmedurchlasskoeeffizient für Wärmestrahlung

Für die Berechnung des Wärmedurchlasskoeffizienten für die Wärmestrahlung hc gibt es zwei grundsätzliche Verfahren:

  • Äquivalente Wärmeleitfähigkeit (DIN EN ISO 6946, DIN EN 673 und DIN EN ISO 10077-2)
  • Radiosity-Verfahren (DIN EN ISO 10077-2)

Die äquivalente Wärmeleitfähigkeit berechnet sich wie folgt:

DIN EN ISO 10077-1: [math]\displaystyle{ h_r = 4 \cdot \sigma \cdot T_{mit}^3 \cdot F \cdot E }[/math]
DIN EN ISO 6946: [math]\displaystyle{ h_r = \frac{4 \cdot \sigma \cdot T_{mit}^3}{1/E-1+1/F} }[/math]
DIN EN 673: [math]\displaystyle{ h_r = 4 \cdot \sigma \cdot T_{mit}^3 \cdot E }[/math]
  • σ - Stefan-Boltzmann-Konstante: 5,67E−8 W/(m²K4)
  • Tmit - mittlere thermodynamische Temperatur (vereinfachend T=283 K = 10°C)
  • F - Winkelfaktor bzw. Einstrahlzahl für kleine Hohlräume (Breite und Höhe jeweils kleiner als die 10fach Tiefe (Dicke in Wärmestromrichtung) [math]\displaystyle{ F = 0,5 \cdot (1+\sqrt{1+(d/b)^2}-d/b) }[/math]
  • E - Strahlungsaustauschgrad [math]\displaystyle{ E = (1/\epsilon_1 + 1/\epsilon_2 - 1)^{-1} }[/math]


siehe: Wärmedurchlasskoeffizient